НАНОТЕХНОЛОГИИ - ПРОРЫВ В БУДУЩЕЕ!

S
 National Student Team Contest (first stage)
 Solution of task 1. Laser transfer of nanoparticles
 students

The motion equation of NP with a mass m along the axis x is:

$$
m a=m \frac{d v}{d t}=-k r v
$$

Using separation of variables and integration one will have:

$$
v=v_{0} e^{-\frac{k r}{m} t}
$$

where v_{0} - initial velocity, and k - proportionality coefficient of resistance force.

Taking into account that $v=\frac{d x}{d t}$, the law of motion along the axis x can be obtained by the additional integration:

$$
x=\frac{m}{k r} v_{0}\left(1-e^{-\frac{k r}{m} t}\right)
$$

It is obvious that the distance between NP and the film surface converges the maximum value (in the limit of infinite time):

$$
x_{\max }=\frac{m}{k r} v_{0}=\frac{4 / 3 \pi r^{2} \rho}{k} v_{0}
$$

Let $r_{1}=200 \mathrm{~nm}, r_{2}=400 \mathrm{~nm}, k_{2}=50 k_{1}, x_{\max 1}=250 \mathrm{~nm}$ (1- air, 2 - water).
Finally: $X_{\max 2}=\frac{k_{1}}{k_{2}} \frac{r_{2}^{2}}{r_{1}^{2}} x_{\max 1}=\frac{1}{50} \cdot 4 \cdot 250 \mathrm{~nm}=20 \mathrm{~nm}$.

