

Fig. 1. Scheme: ex. $=$ excess, eq. $=$ equivalents, $P d^{0}=P d\left(P P h_{3}\right)_{4} ;[H]=$ reduction of transition metal to 2+; (no Z3) = only insoluble polymer was formed instead of expected $\mathbf{Z 3}$.

Inset: TEM images of $\mathbf{Z 2}^{\prime}$ and $\mathbf{Z 3}^{\prime}$.

The scheme above describes the synthesis of some kind of homologous nanoobjects \mathbf{Z}, starting from simple compounds.

1. Schematically draw the structures of nanoobjects $\mathbf{Z 1}, \mathbf{Z 2}, \mathbf{Z 3}$. ($\mathbf{2}$ points)

What are the stoichiometries for their formation reactions and what are their charges? (2 points)
Give the structures of $\mathbf{X} \mathbf{1}, \mathbf{X} \mathbf{2}$, and $\mathbf{X} \mathbf{3}$ if $\mathbf{Z 1}$ has no isomers. ($\mathbf{2}$ points)
What are the differences between \mathbf{Z} and \mathbf{Z}^{\prime} in the pairs $\mathbf{Z 2} / \mathbf{Z 2}$ and $\mathbf{Z 3} / \mathbf{Z 3}$ '? (1 point)
2. Explain the main ideas of $\mathbf{Z 2}^{\prime}$ and $\mathbf{Z 3}^{\prime}$ synthesis (compared to $\mathbf{Z 2}$ and $\mathbf{Z 3}$) and propose the way to obtain $\mathbf{Z 2}^{\prime}$ from \mathbf{C}. (3,5 points)
3. Using the bond lengths roughly estimate the sizes of $\mathbf{Z 1}, \mathbf{Z 2}, \mathbf{Z 3}$ as the diameters of the circumscribed spheres. (1,5 points)

Total - 12 points

