

Solution of task 4. Nanopuzzles

1. To complete the triangles, **X1** must be the *ortho*-dibrom derivative. Single isomer of **Z1** yields only the shown below **X1**:

http://enanos.nanometer.ru

Z1, **Z2**, **Z3** – all the circles = Cd, **Z2'**, **Z3'** – red circles = Ru, blue circles = Cd ($R_1 = R_2 = OMe$).

> $3Y1 + 3Cd^{2+} = Z1^{6+}$ $3Y1 + 3Y2 + 9Cd^{2+} = Z2^{18+}$ $3Y1 + 3Y2 + Y3 + 18Cd^{2+} = Z3^{36+}$

2. The main idea is to assemble **Z2'** and **Z3'** so that there are less other ways for the initial fragments to connect (the main problem of synthesis of **Z2** and **Z3**):

Ru is used to "glue" smaller fragment together and to fix them after reduction to Ru²⁺, because it forms very strong bonds with terpyridine fragments which survive cross coupling conditions. Cd²⁺ is used because it binds quite reversibly so big fragments could assemble in the right way.

To obtain **Z2'** from **C** the same reactions as for **Z3'** are used, except 1eq.**Y1** is used at the first step and only single Cd^{2+} is used at the final self-assembly step.

3. Rough estimation of triangle size (A_z). Consider all the bonds to be of the same length as the aromatic C-C bond (0.14 nm), then the hexagon diagonal is 2 C-C bond lengths. Add to the circumscribed around triangle circle diameter (D = $2 \cdot A_z / \sqrt{3}$) 2 C-C bond lengths (to roughly account for OMe groups).

A _{Z1} = 18·0.14 = 2.52 nm	D _{z1} = 3.2 nm
A _{Z2} = 34·0.14 = 4.76 nm	D _{z2} = 5.8 nm
A _{Z3} = 50∙0.14 = 7 nm	D _{z3} = 8.4 nm