National Student Team Contest (first stage) Solution of task 4. Nanopuzzles

1. To complete the triangles, $\mathbf{X 1}$ must be the ortho-dibrom derivative. Single isomer of $\mathbf{Z 1}$ yields only the shown below X1:

A

Z1, Z2, Z3 - all the circles = Cd,
$\mathbf{Z 2}^{\prime}, \mathbf{Z 3}^{\prime}-$ red circles $=\mathrm{Ru}$, blue circles $=\mathrm{Cd}\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OMe}\right)$.

$$
\begin{gathered}
3 \mathrm{Y} 1+3 \mathrm{Cd}^{2+}=\mathbf{Z 1}^{6+} \\
3 \mathrm{Y} 1+3 \mathrm{Y} 2+9 \mathrm{Cd}^{2+}=\mathbf{Z 2}^{18+} \\
3 \mathrm{Y} \mathbf{1}+3 \mathbf{Y} \mathbf{2}+\mathbf{Y} \mathbf{3}+18 \mathrm{Cd}^{2+}=\mathbf{Z 3}^{36+}
\end{gathered}
$$

2. The main idea is to assemble $\mathbf{Z 2}^{\prime}$ and $\mathbf{Z 3}^{\prime}$ so that there are less other ways for the initial fragments to connect (the main problem of synthesis of $\mathbf{Z 2}$ and $\mathbf{Z 3}$):

Ru is used to "glue" smaller fragment together and to fix them after reduction to Ru^{2+}, because it forms very strong bonds with terpyridine fragments which survive cross coupling conditions. Cd^{2+} is used because it binds quite reversibly so big fragments could assemble in the right way.

To obtain $\mathbf{Z 2}^{\prime}$ from \mathbf{C} the same reactions as for $\mathbf{Z 3}^{\prime}$ are used, except 1eq. $\mathbf{Y 1}$ is used at the first step and only single Cd^{2+} is used at the final self-assembly step.
3. Rough estimation of triangle size $\left(A_{z}\right)$. Consider all the bonds to be of the same length as the aromatic $\mathrm{C}-\mathrm{C}$ bond $(0.14 \mathrm{~nm})$, then the hexagon diagonal is $2 \mathrm{C}-\mathrm{C}$ bond lengths. Add to the circumscribed around triangle circle diameter $\left(D=2 \cdot A_{z} / \sqrt{3}\right) 2 C-C$ bond lengths (to roughly account for OMe groups).
$A_{z 1}=18 \cdot 0.14=2.52 \mathrm{~nm}$
$D_{z 1}=3.2 \mathrm{~nm}$
$A_{z 2}=34 \cdot 0.14=4.76 \mathrm{~nm}$
$D_{z 2}=5.8 \mathrm{~nm}$
$A_{z 3}=50 \cdot 0.14=7 \mathrm{~nm}$
$D_{z 3}=8.4 \mathrm{~nm}$

